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Geography
• 890 square miles
• 1,350 miles of roads 
• 21 miles of railroad lines
• 112 miles of electrical 

transmission and 
distribution lines

Infrastructure / Mission
• 4 reactors
• Nuclear and radiological 

facilities
• 2 spent fuel pools
• 400+ buildings
• 3 fire stations
• Mass transit system
• Explosive range                  
• Landfill
• Museum
• Significant security profile 
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INL Mission: Discover, demonstrate and secure innovative nuclear 

energy solutions, clean energy options and critical infrastructure.

Idaho National Laboratory – A Unique Capability for the Nation

Advancing 
Nuclear 
Energy

Securing & 
Modernizing 
Critical 
Infrastructure

Enabling 
Clean
Energy 
Systems

• Advanced reactor design and optimization

• Nuclear fuels and materials

• Fuel cycle technologies

• Light water reactor fleet sustainability

• Advanced transportation

• Environmental sustainability

• Clean energy

• Advanced manufacturing

• Biomass

• Critical infrastructure protection 
and resiliency

• Nuclear nonproliferation

• Physical defense systems
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Connected and Automated Vehicles

• Levels of Automation
– The SAE International definitions for levels of automation divide vehicles into levels based on “who does what, when.”

– Fully automated, autonomous, or “self-driving” vehicles are defined as “those in which operation of the vehicle occurs without 
direct driver input to control the steering, acceleration, and braking and are designed so that the driver is not expected to constantly 
monitor the roadway while operating in self-driving mode.”



Connected and Automated Vehicles

• Connected Vehicles
– Connected vehicles are vehicles that use any of a number of different communication technologies to communicate 

with the driver, other cars on the road (V2V), roadside infrastructure (V2I), and the “Cloud” (V2C). 

– This technology can be used to not only improve vehicle safety, but also to improve vehicle efficiency and commute 
times. 

Source: http://autocaat.org/Technologies/Automated_and_Connected_Vehicles/

Source: https://phys.org/news/2018-06-demystifying-future-autonomous-vehicles.html
Source: https://medium.com/self-driving-cars/improving-self-driving-car-safety-and-

reliability-with-v2x-protocols-1408082bae54

http://autocaat.org/Technologies/Automated_and_Connected_Vehicles/
https://phys.org/news/2018-06-demystifying-future-autonomous-vehicles.html
https://medium.com/self-driving-cars/improving-self-driving-car-safety-and-reliability-with-v2x-protocols-1408082bae54


Connected and Automated Electric Vehicles

Convergence of the Electric Propulsion Systems

and Automated Vehicles:

• EVs have inherent advantages when it comes to fuel 

savings and reducing the impact on the environment. 

• It is easier for computers to drive electric vehicles.

• The lower operating cost of a battery-electric vehicle is 

a much bigger factor.

Major automakers’ partnerships related to mobility, 

connectivity and driving automation
Source: https://www.cargroup.org/wp-content/uploads/2018/07/Impact-of-ACES.pdf



A variety of intelligent transportation system on highway, arterial and urban roads enabled by connected and automated vehicles
• Communication with other vehicles enables (1) augmented awareness, (2) platooning, and (3) cooperative maneuvers. 

• (4): Communication with the infrastructure enables enhanced approach and departure to signalized intersections. Cloud connectivity enables access to 

databases, forecasts, and remote computations. On-board perception, localization and maps are fundamental to navigate in known and unknown environments. 

• (5): Roadway sensors generate signal phase and timing (SPaT) and vehicle occupancy and speed (VOS) data, that can be stored in the cloud. 

• (6): Other applications include coordination of grid charging, parking, road works

Source: Guanetti, Jacopo, Yeojun Kim, and Francesco Borrelli. "Control of connected and automated vehicles: State of the art and future challenges." Annual Reviews in Control (2018).

Applications From Connected Automated Vehicles



Electrified Drive

Systems
(PHEV,BEV,FEV)
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Prediction Model
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• Eco-Driving
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Overview of Energy Management for Connected Automated EVs
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Electric Vehicle Energy Consumption Model and Prediction

Reachable 

Range 

Estimation

• Route Information

• Traffic Information

• Environmental Profile

Trip Level Energy

Consumption Prediction

• Starting Location

• Energy Cost Constraint

• Routing Engine

• Traffic Information

• Environmental ProfileEnergy Consumption

Model and Prediction

Sources: 

Zonggen Yi, Peter H. Bauer. "Energy Consumption Model and Charging Station Placement for Electric Vehicles." Smartgreens. 2014.

Zonggen Yi, Peter H. Bauer. "Effects of environmental factors on electric vehicle energy consumption: a sensitivity analysis." IET Electrical Systems in Transportation 7.1 (2016): 3-13.

Physical 

Based 

Modeling

Data 

Driven 

Modeling



Physical Based Methods for Energy Consumption Modeling
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• Mass: 𝑀
• Frontal area: 𝐴
• Drag coefficient:  𝐶𝑑
• Air density: 𝜌
• Wind speed: 𝑤(𝑡)
• Rolling resistance: 𝑓𝑟(𝑡)
• Road surface angle: 𝛼(𝑡)
• Vehicle speed: 𝑣(𝑡)
• Acceleration: 𝑎(𝑡)

Power Consumed at Wheels

Power Consumed at Battery
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Data Driven Methods for Energy Consumption Modeling

Source: B. Zheng, P. He, L. Zhao, and H. Li, “A hybrid machine learning model for range 

estimation of electric vehicles,” in Proc. Global Commun. Conf., Washington, DC, USA, Dec. 

2016, pp. 1–6.

• Data-driven methods utilize machine learning models, and historical and real-time data that are collected from multiple 

resources to create the energy consumption models. 

• The data may include the time-series data, such as, elevation, speed, acceleration and power consumption, and also include 

other static map and vehicle specification data, e.g. distance, trip run time, temperature, weight of loads, tire pressure, 

frontal area. 

Hybrid Machine Learning Model 

Source: Yuche Chen, et al. "Data-driven fuel consumption estimation: A 

multivariate adaptive regression spline approach." Transportation Research 

Part C: Emerging Technologies 83 (2017): 134-145.

Multivariate Adaptive Regression Spline Approach
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Challenges of EV Energy Consumption Prediction

• Powertrain efficiency is determined

by the operating conditions
− Vehicle Speed

− Acceleration

− Angle of Incline

0 mph(red)

W=20mph 

North(blue) 

East(green) 

South(aqua) 

West(yellow)

Tesla Model S

10kWh

0.005(red) 

0.01(blue) 

0.02(green) 
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Tesla Model S

10kWh

Source: Zonggen Yi, Peter H. Bauer. "Effects of environmental factors on electric vehicle energy consumption: a 

sensitivity analysis." IET Electrical Systems in Transportation 7.1 (2016): 3-13.

• Environmental effects on 

energy cost
− Wind speed

− Rolling resistance

− Parasitic power

− Temperature



Challenges of EV Energy Consumption Prediction
• Illustrations from Real World Historical Data



EV Energy Consumption Modeling Using Combined Method

• Energy cost per mile (kWh/mile) distribution • A stochastic model for Nissan Leaf

𝐹𝑚𝑝 𝑣 = 0.00011𝑣2 − 0.00786𝑣 + 0.43340

𝐹𝑣𝑝 𝑣 = 0.09073𝑒0.09736𝑣 + 0.00219

Source: Zonggen Yi, Matthew Shirk. "Data-driven optimal charging decision making for connected and 

automated electric vehicles: A personal usage scenario." Transportation Research Part C: Emerging 

Technologies 86 (2018): 37-58.



EV Energy Consumption Modeling Using Combined Method

Requirement for promising EV energy consumption modeling

✓ Combined Physical based data-driven modeling can provide a robust and feasible modeling approach.

✓ Stochastic modeling can provide the capability of modeling real-world uncertainties.

✓ Real-time updating is necessary to handle the dynamics of real world traffic and other environmental conditions.

• Multiple Channels Prediction Model and Real-time Update



Opportunities of Connected EVs for Energy Consumption Prediction

Source: Sherin Abdelhamid, Hossam S. Hassanein, and Glen Takahara. "Vehicle as a mobile 

sensor." Procedia Computer Science 34 (2014): 286-295.Vehicle as a Mobile Sensor

Source: https://www.neophotonics.com/sensors-for-autonomous-driving/Source: https://www.bourns.com/products/automotive/automotive-sensors
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Overview of Energy Efficiency Driving Technologies

Control and Optimization Architecture for Connected and Automated Vehicles

Source: Guanetti, Jacopo, Yeojun Kim, and Francesco Borrelli. "Control of connected and automated vehicles: State of the art and future challenges." Annual Reviews in Control (2018).

Trip Level Energy 

Efficiency Driving

Eco-Driving/Eco-Routing

Photo Source: http://vehiclesummit.ieee.org/



Eco-Driving Technologies in CAEVs

• Eco-Driving refers to the computation of a minimum-energy vehicle trajectory along a certain route. 

• Eco-Driving exploits route information and long-term forecasts (such as road grade and traffic congestion) and 

accounts for constraints such as trip time and maximum velocity; vehicle stops and intersections are also considered on 

urban and arterial roads.

– Energy efficient: EVs convert about 59%–62% of the electrical energy from the grid to power at the wheels. Conventional 

gasoline vehicles only convert about 17%–21% of the energy stored in gasoline to power at the wheels. (source: 

https://www.fueleconomy.gov/feg/evtech.shtml#end-notes)

– Electric vehicles can have very different ranges under different vehicle speeds 

– Energy consumption is sensitive to environmental conditions

0 mph(red)

W=20mph 

North(blue) 

East(green) 

South(aqua) 

West(yellow)

Tesla Model S

10kWh

https://www.fueleconomy.gov/feg/evtech.shtml#end-notes


Eco-Driving Technologies in CAEVs

• Optimal Speed Profile Design (Reference Cruising Velocity Generation)

– Objective: Optimal Speed Profile v(s) with regard to location

– Position-Based Energy Consumption Model

➢ Longitudinal Tire Force

➢ Position-Based Energy Cost

Source: Zonggen Yi, Peter H. Bauer. "Energy Aware Driving: Optimal 

Electric Vehicle Speed Profiles for Sustainability in 

Transportation." IEEE Transactions on Intelligent Transportation 

Systems 20.3 (2019): 1137-1148.



Eco-Driving Technologies in CAEVs

• Optimal Speed Profile Design

Minimum Energy Cost with 

Time Cost Constraint(MECTC)
Minimum Time Cost with 

Energy Cost Constraint(MTCEC)

Overall Energy Cost: Overall Time Cost:



Eco-Driving Technologies in CAEVs

• Eco Approaching and Departure 

– Minimize travel time, reduce acceleration peaks, avoid idling at red lights, or directly minimize energy consumption

• Methodologies

– Heuristic Algorithms

– Dynamic Programming 

– Model Predictive Control

– Genetic Algorithms

A system diagram of MPC-based EAD for EVs 

Illustration of different vehicle trajectories traveling across an intersection 

Source: Xuewei Qi, Matthew J. Barth, Guoyuan Wu, Kanok Boriboonsomsin, and Peng Wang. "Energy impact of 

connected eco-driving on electric vehicles." In Road Vehicle Automation 4, pp. 97-111. Springer, Cham, 2018.



Eco-Driving Technologies in CAEVs
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Eco-Routing Technologies for CAEVs

• Eco-Routing aims to find a route that requires the least amount 

of fuel and/or produces the least amount of emissions for 

traditional vehicles. 

• For electric vehicles with zero emission, Eco-Routing

corresponds to finding the route with the minimum battery 

energy consumption.

• Eco-Routing in electric vehicles has special features:

– The energy cost of a route segment can be negative due to 

regenerative braking, which can occur in two different ways: (a) 

downhill driving in a 3D route profile and (b) deceleration.

– The recuperation of the kinetic and potential energy depends on 

the route choice as well as the characteristics of the power 

sources i.e. their capacity and powertrain efficiency

• Methodologies

– Dijkstra-like algorithms: R. Abousleiman et al., 2014

– A* algorithms: Y. Wang et al., 2013; A. Cela et al., 2014

– Optimization based techniques: M. W. Fontana, 2013; O. 

Arslan et al., 2015, Zonggen Yi et al., 2018

Sample path for shortest route, fastest route, eco route, and constrained eco route 

with routing cost estimated from posted speed limit

(Source: Huang, Xianan, and Huei Peng. "Eco-routing based on a data driven fuel 

consumption model." arXiv preprint arXiv:1801.08602 (2018).)



Eco-Routing Technologies for CAEVs

• Optimization Based Methods

min
𝑥𝑖𝑗
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A comparison between the minimum distance route and the minimum energy 

route, for an origin and a destination in the Berkeley area: The minimum distance 

route is 9.72km long, and requires 4.23kWh according to a simple model of plug-in 

hybrid electric vehicle. The minimum energy route is 10.03km long, and requires 

3.22kWh according to the same model.

Source: Guanetti, Jacopo, Yeojun Kim, and Francesco Borrelli. "Control of connected and 

automated vehicles: State of the art and future challenges." Annual Reviews in Control (2018).



Optimal Stochastic Eco-Routing Solutions

• Stochastic Eco-Routing Model
• Minimize the mean value of overall energy cost for the 

selected route

• Stochastic Integer Programming with Probability Constraint

min
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(a) Optimal routes with different vehicular speeds; (b) Optimal routes with different wind speeds; 

(c) Optimal routes with different EV types; (d) Optimal routes with different efficiencies

Source: Zonggen Yi, Peter H. Bauer. "Optimal stochastic eco-routing solutions for electric vehicles." 

IEEE Transactions on Intelligent Transportation Systems 19.12 (2018): 3807-3817.



Eco-Routing Technologies for CAEVs
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Challenges of Energy Efficiency Technologies in CAEVs

• Challenges of Eco-Driving 

– In optimal control formulations, traffic speed is easily included as an upper bound on the vehicle speed; 

however, its uncertainty is generally neglected, with effects that have not been investigated thus far. 

– Stop signs can also be included as state constraints in optimal control formulations; since they enforce a full 

vehicle stop, this approach essentially generates a multi-phase problem. 

– A stochastic optimization formulation for intersections with actuated signals should be considered. If the 

assumption of free flow on the road link is removed, forecasts of the traffic state (vehicle occupancy and speed, 

queue length) are required. 

– In electric and hybrid powertrains, avoiding vehicle stops may not always be the best policy: the combination of 

regenerative braking and engine on/off may affect significantly the optimal strategy.



Challenges of Energy Efficiency Technologies in CAEVs

• Challenges of Eco-Routing

– Common pitfalls are model accuracy and uncertainty. The application of eco-routing to CAEVs seems promising 

in this regard: the on-board controls, removing to some extent the human driver from the loop, lead to more 

consistent energy consumption. 

– A direction that has been little investigated is the use of systematic methods to handle uncertainty in models and 

forecasts. Vehicle connectivity creates more accurate and broad environment sensing and more comprehensive 

energy cost estimations.

– The effect of eco-routing (and routing algorithms in general) at the network level (rather than at the vehicle level 

only) is not well understood yet. 



Outline

• Overview of Connected and Automated Electric Vehicles

• Electric Vehicle Energy Consumption Modeling

• Energy Efficiency Driving Technologies

– Eco-Driving

– Eco-Routing

• Automatic Charging Decision Making for Connected and Automated Electric 

Vehicles



Integrated Energy Management of Connected Automated Electric 
Vehicles
• Overview of integrated energy management for CAEVs

Energy Consumption
Eco-driving/Eco-routing

Energy Recharging
Charging Decision Making

Energy Management 

of Automated EVs

Sources:

• Zonggen Yi, and Matthew Shirk. "Data-driven optimal charging decision making for connected and automated electric vehicles: A personal 

usage scenario." Transportation Research Part C: Emerging Technologies 86 (2018): 37-58.

• Zonggen Yi, John Smart, and Matthew Shirk. "Energy impact evaluation for eco-routing and charging of autonomous electric vehicle fleet: 

Ambient temperature consideration." Transportation Research Part C: Emerging Technologies 89 (2018): 344-363.



Opportunities from Automated Electric Vehicles
Connected Automated EVs

Photo Source: 

http://www.ipwatchdog.com/2015/06/

18/wireless-induction-charging-is-

coming-to-electric-

vehicles/id=58756/

Photo Source: 

https://patents.google.com/pat

ent/US9527403

Automatic Charging Station

Automatic Charging Decision Making

• An automatic decision making process is 

necessary for charging of automated 

electric vehicles 

• Remove the challenge of co-locating 

charging infrastructure with driver 

destinations 

• Utilize real-time charging station status 

information

Connected Charging Station 

Network

Benefits
• Ensure sufficient battery energy to meet travel needs

• Minimize the energy/time/money cost of charging actions

• Facilitate the charging control and vehicle/grid integration



A Framework for Automatic Charging Decision Making

Travel/Itinerary Information 

• Visited locations 

• Staying time

Nearby Charging Station Network

• Location

• Availability

EV Energy Consumption Model Multi-Stage Dynamic Programming

Optimized Charging Strategies
• Charging location

• Charging energy amount

• Charging time interval



Dynamic Programming for Charging Decision Making

• Multi-Stage Charging Decision Making Modeling

Deterministic (Average) Modeling Robust Modeling 

Objective Function: (Energy, Economy, etc.)
Energy Cost Prediction



Simulation Studies

Level 2 Charging Stations DC Fast Charging Stations

Average Decision Making 

for Charging Strategies

Robust Decision Making 

for Charging Strategies



Eco-Routing and Charging Decision Making for Automated EV Fleet

Objective
• Select the route with minimum energy cost and 

simultaneously charge vehicles automatically to satisfy the 

battery energy requirement in an autonomous EV fleet

Case 1: no charging station and energy requirement

Case 2, 3, 4: DC fast charging station and energy requirement 

with  E1=10kWh and E13=20kWh

Case 5, 6: Level 2 charging station in Node 3 and DC fast 

charging station in Node 10 with energy requirement and 

different travel time requirements

• Optimization Model for Simultaneously Routing and Charging Decision Making



Eco-Routing and Charging Decision Making for Automated EV Fleet

Month

Temperature(℃)

(Low, High)

Month

Temperature(℃)

(Low, High)

January (-3.1, 3.8) February (-1.9, 5.5)

March (1.9, 9.9) April (6.9, 15.7)

May (12.6, 21.5) June (17.7, 26.3)

July (21, 29.3) August (20.3, 28.4)

➢ A simulated fleet with 100 CAEVs

➢ Each CAEV in fleet performs 100 O-D trips

• Valuable Findings
– Energy management for an autonomous EV fleet is sensitive to the 

realistic environmental conditions, e.g. ambient temperature.

– Individually routing and charging decision making of CAEVs can cause 

problematic coincident charging demand pattern without coordination. 

– It is important and necessary to design and manage autonomous fleet 

system cooperatively between automatic decision making in CAEV and 

infrastructure system planning.



Vehicle Level Challenges for Integrated Energy Management of CAEVs

• Energy Consumption Dynamics 

Realistic charging power data for a 2015 Nissan LeafEnergy cost per mile of Nissan Leaf Taxi with regard to average 

vehicle speed and ambient temperature in New York City

• Charging Power Dynamics



Vehicle Level Challenges for Integrated Energy Management of CAEVs

• Impact of High Power Charging to Battery Life

Percent change in energy capacity from baseline
Source: https://www.energy.gov/sites/prod/files/2015/01/f19/dcfc_study_fs_50k.pdf

A rendering of a 350kW XFC charging station by Electrek.
Source: https://www.energy.gov/eere/vehicles/downloads/enabling-extreme-fast-

charging-technology-gap-assessment



System Level Challenges for Integrated Energy Management of CAEVs 

Automatic Charging 

Decision Making

Eco-Routing/Eco-

Driving

Centralized vs Decentralized
• Communication cost

• Computing cost

Charging Infrastructure 

Network
• Different charging power levels

• Dynamic utilization pattern

Systematic Energy 

Management for 

Personal/Shared 

Automated EV Fleet

Co-Optimization

Spatiotemporal travel demand

Source: http://tncstoday.sfcta.org/



Summary

• An introduction to connected and automated electric vehicles has been provided. Future intelligent transportation and 

energy management applications are summarized and illustrated.

• Modeling technologies of electric vehicle energy consumption are introduced, i.e. physical based and data driven 

methods. Some opportunities from vehicle automation and communication are identified.

• Two types of trip level energy efficiency driving technologies, i.e. eco-driving and eco-routing, are introduced. Specific 

research questions and scenarios are illustrated, and their potential methods and challenges are summarized.

• Automatic charging decision making for CAEVs are introduced to investigate the possibility of integrated energy 

management for future CAEV transportation systems. Challenges from both vehicle and transportation system levels 

are identified for promising future research.


